

STM32MP1 microprocessor, STM32의 새로운 도약

MMS Korea

Caleb Kang

STM32MP1 introduction

A general purpose MPU

Boosting performances with Dual Cortex-A7 @ 800MHz

A broader STM32 MPU ecosystem to reduce development time & cost

Suitable for all Developer Types and Multiple Applications

Rich feature set for boosting application possibilities

Graphic and communication High Performance processing up to 3040 DMIPS

life.auamented

Real-time & Low Power applications 260 DMIPS

Ready to successful MPU development

STM32MP1 hardware architecture

STM32MP1 microprocessor unit

*available for STM32MP157C and STM32MP157F only

STM32MP1 peripherals

Bus architecture overview

Power supplies

Name	Typical or Range	Description		
VDD	1.7V ~ 3.6V	Power supply input for I/Os		
VDD_PLL / ANA / DSI		Power supply input for PLLs and system analog like RCC, PWR and DSI. To be connected to VDD		
VDD_CORE	1.2V	Power supply input for Digital Core domain		
VDDA	1.7V – 3.6V	Analog Power supply input for ADCs, DACs and voltage reference buffers		
VDDQ_DDR	1.2V / 1.35V / 1.5V	Power supply input for DDR Physical Interface (PHY) and IOs		
VDD3V3_USBHS/FS	3.3V	Power supply input for USB Physical Interface (PHY) and IOs		
Internally generated Power Supplies				
VDDA1V8_REG	1.8V	Analog Power Supply input or output, used internally for USB Physical Interface (PHY)		
VDDA1V8_DSI		Analog Power supply input for DSI Physical Interface (PHY), to be connected to VDDA1V8_REG		
VDDA1V2_DSI_REG	1.2V	Analog Power supply output, used internally for DSI PLL		
VDDA1V2_DSI_PHY		Analog Power supply input for DSI Physical Interface (PHY), to be connected to VDDA1V2_DSI_REG		
VDDA1V1_REG	1.1V	Analog Power supply output for USB Physical Interface (PHY)		

STPMIC1 block diagram

STPMIC1

Package: WFQFN 5x6x0.8 44L pitch 0.4mm

OTP fuse

• OTP Fuses are One Time Programming memory

- Initial bits are '0' and are irreversibly programmed to '1'
- Incremental programing of bits in a 32-bit word is possible
- Handled thru BSEC (Boot and Security) controller IP
 - Programming, reading, status and locking handled by BSEC
 - Lock mechanism to avoid read and/or program (32-bits granularity)
- OTP Content
 - Product configuration and Trimming values set by ST during production
 - Secrets and unique identification numbers set by ST during production
 - Device configuration set by OEM (e.g. MAC address, boot source, security mode, etc...)
 - Secrets set by OEM (e.g. for secure boot)
 - Up to 1184 bits available for other OEM purposes

OpenSTLinux software architecture

From MCU to MPU

Multiple core architecture concept

- Hardware execution context
 - « a core and a security mode »
- Firmwares executed runtime contexts
 - Arm Cortex-A secure (Trustzone) executes OP-TEE
 - Arm Cortex-A non secure executes Linux
 - Arm Cortex-M (non secure) executes STM32Cube
- Peripheral assignment to the runtime contexts
 - Assigned or shared

Peripherals sharing

Software memory mapping

• The memory mapping below is a subset of all regions that are really exposed at hardware level.

Shared RAM memory mapping

	Cortex-A7 Non-Secure	Cortex-M4
MCU SRAM4 (64kB)	DMA buffers	
MCU SRAM3 (64kB)	Inter Process Commu	nication (IPC) buffers
MCU SRAM2 (128kB)		Data
MCU SRAM1 (128kB)		Code
RETRAM (64kB)		Code & Data Vector table

• Each customer can of course tune this mapping (regions location and sizes) to fit with his product needs

STM32MPU embedded software

OpenSTLinux + STM32Cube

Open-embedded user space

STM32MP1 platform boot

Standard Linux boot chain

STM32MP1 boot chain (1/2)

STM32MP1 boot chain (2/2)

Trusted boot chain

Basic boot chain

STM32CubeProgrammer for IMAGE programming

OpenSTLinux distribution

Concept of OpenSTLinux

- OpenSTLinux is a concept for STM32MPU embedded SW package
 - Concept = naming + associated pillars
- Pillars
 - Usage of a standard kernel interface (no proprietary interface)
 - Usage of Open Source software
 - Link to community (upstream)
 - Easy to use
- It supports OpenEmbedded build process
 - Yocto Compatible (target is to have a Board Support Package (BSP) hosted on Yocto server)

Available packages

Starter Package

- To quickly and easily start with any STM32MP microprocessor device.
- This Package is generated from the Distribution Package.

Developer Package

- To add your own developments on top of the STM32MPU Embedded Software distribution, or to replace the Starter Package pre-built binaries.
- This Package is generated from the Distribution Package.

Distribution Package

• To create your own Linux[®] distribution, your own Starter Package and your own Developer Package.

Packages and use cases

- Packages
 - Starter Package
 - Developer Package
 - Distribution Package
- Rationale
 - Cover all the possible usages from our customers
 - Discover -> Prototype -> Start new hardware -> Productize software
 - Customer receives a board with an OpenSTLinux Starter package
 - Assess board capacities and performance
 - Customer wants to run existing applications = Starter package
 - Customer wants to develop their own application = Developer package
 - Customer wants to start their own hardware = prototype with Developer package then Distribution
 - Productization of software = Distribution package

- Flashable images
- Software Development Kit (SDK) and BSP tarballs
- Open Embedded distribution full source

Starter package

- STM32MPU Embedded Software Starter Package
 - ST images stored with HW diversity flashlayout.zip = Yocto based images

Focus on starter package

- Binaries ready to use by customer: Yocto/OpenEmbedded image (Weston)
 - Demonstrate the capacity of the platform
 - Available on microSD card or directly flashed onto the board
 - At this stage, Yocto starter package is only a prerequisite for developer kit
- Deliverables
 - Set of binaries with a specific flash layout
 - Script to generate an SD card raw image
 - Complete combinations (binaries x flash layouts) of microSD card ready to use images (aka stimg) are not provided by default; there are too many configurations

Developer package

- Yocto based on st-image-weston
 - SDK (Toolchain + Includes)
 - Sources (Community Tarball + ST Patches + ST configs)
 - Kernel and Boot (U-Boot, ATF)
 - STM32MP1-M4 Cube

STM32MPU Embedded Software Developer Package

Focus on developer package

- Developer package = SDK (Software Development Kit) + Source code
 - Uses Starter package images
 - Only Yocto/OpenEmbedded SDK, based on Weston images, is provided
 - Source code provided
 - Kernel, U-Boot, ATF, OPTEE (optional), STM32Cube
 - Pre-compiled toolchain
- Release mode depends on the project stages
 - Alpha customer
 - Source code (tar ball from community) + patch
 - Mass market
 - Source code (tar ball from community) + patch
 - Git (ST github) = community content + all patches pending upstream

Distribution package

- Yocto based (ST layers + ST patches on Git community)
 - oe-manifest
 - meta-st-stm32mp
 - meta-st-openstlinux
 - STM32MP1-M4 Cube
 - meta-st-custo (to customise via appends per customer)

STM32MPU Embedded Software Distribution Package

OpenEmbedded

- Project initiated by the Linux Foundation in 2010 and is still managed by one of its fellows: Richard Purdie.
- Linux-based cross-compilation framework
- Open source (but can be used to build proprietary code)
- It is based on git for software configuration management

OpenEmbedded ecosystem

• People talk about Yocto, Poky or OpenEmbedded and this can be confusing,

Name	Description
OpenEmbedded	Build Framework for embedded Linux Maintained by the community Source version of Poky Setup mainly consolidated for ARM platforms
Yocto	A project that uses OpenEmbedded build system
Poky	Poky is a reference system of the Yocto Project - a collection of Yocto Project tools and metadata that serves as a set of working examples. Poky uses OpenEmbedded Core Poky is maintained by Intel. Setup is mainly consolidated for Intel platforms

• Some projects works on a Yocto base, some others on a Poky base, but in the end everything is compatible.

OpenEmbedded

openembedded

- What OpenEmbedded does,
 - Source code download
 - Patch application
 - Cross compilation
 - Package management
- What OpenEmbedded generates,
 - Binary packages
 - Linux-based system images
 - Toolchains
 - SDKs (Software Development Kits)

Poky Tool

Compilation flow

STM32MP1 Wiki and community

- STM32MP1 Wiki: <u>https://wiki.st.com/stm32mpu/index.php/Main_Page</u>
- STM32 MPU Community: https://community.st.com/s/topic/0TO0X0000003u2AWAQ/stm32-mpus

by STM32 MPU	Q. Search I	Enter relevant keywords and click the Search button Search Login Home Q&A ~ Communities Share Your Activities Idea Zone Articles About ~
 ✓ È È ✓ Main page E Glossary B Reading tips Main Page 	Welcome Cetting started Development zone Legal notice Wiki archives Welcome Welcome to the STM32 Arm® Cortex®-based MPUs user guide!	STM32 MPUS STM32MP1 OpenSTLinux STM32Cube_MPU STPMICI This is where you can ask specific technical questions and get answers. • Visit the Communities Page to join Groups for more interfacilus. • Vou can now submit ideas on some of our products! See "idea Zone" in the navigation bar, and click here for details
	 This user guide aims at assisting developers to use STM32 MPUs microprocessor devices STM1croelectronics, starting with the STM32MP1 series. [1] To contains many articles to discover the STM32MP1 series and associated ecosystems (STM32 boards, embedded software, development tools, trace & debug tools). The new release (STM32MP16 ecosystem release v2.0.0) for STM32MP1 series has arrived This version is the first version of the new ecosystem release flow (aka cosystem-v2 release). Discover all the new features described in the STM32MP15 ecosystem release note or jump in using the Getting started zone. The aver looking for software information related to the STM32MP15 ecosystem-v1 archived wikit. 	DISCUSSIONS ARTICLES Sort by: Latest Posts STM32 MPUs NEW Ecosystem V2.0 Release - Emb. SW and Boards STM32 MPUs NEW Ecosystem V2.0 Release - Emb. SW and Boards STM32 MPUs NEW Ecosystem V2.0 Release - Emb. SW and Boards STM32 MPUs NEW Ecosystem V2.0 Release - Emb. SW and Boards STM32 MPUs NEW Ecosystem V2.0 Release - Emb. SW and Boards STM32 MPUs NEW Ecosystem V2.0 Release - Emb. SW and Boards STM32 MPUs NEW Ecosystem V2.0 Release - Emb. SW and Boards STM32 MPUs NEW Ecosystem V2.0 Release - Emb. SW and Boards STM32 MPUs - Divers Grave State AMA New : STM32MP1 FAQ "Knowledge Article" STM32 MPUs - Divers Grave State AMA STM32 MPUs - Divers Grave State AMA New to use st link and connect GDB server in cube Ide STM32 MPUs - TSuru2 - 14h rago OperSTLInus - Prandow - July 10, 2020 at cit FPM OperSTLInus - Prandow - July 10, 2020 at cit FPM STM32 MPUs - Uverg2 - July 8, 2020 at cit SPM How to Initialize USB_OTG_FS In CubeMX7 STM32 MPUs - Uverg2 - July 8, 2020 at 259 PM

Demonstration

Demo

- STM32MP1 DK2 Board
 - ST-LINK embedded debug tool
 - LEDs, push-buttons
 - Ethernet 1-Gbps connector
 - USB Type-C[™] OTG connector
 - HDMI® transceiver
 - LCD display with a touch panel
 - microSD[™] connector
 - Wi-Fi[®] and Bluetooth[®] Low Energy

Thank you

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

