

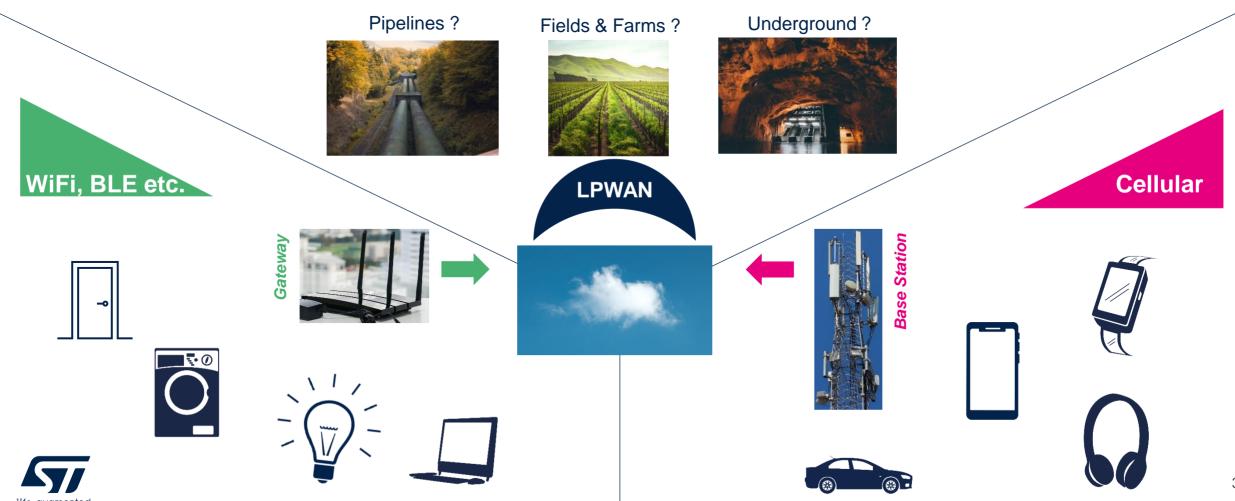
STM32WL, 세계 최초의 LoRa 원-칩 솔루션 STM32 Discovery Day Online Track 2020

John LEE

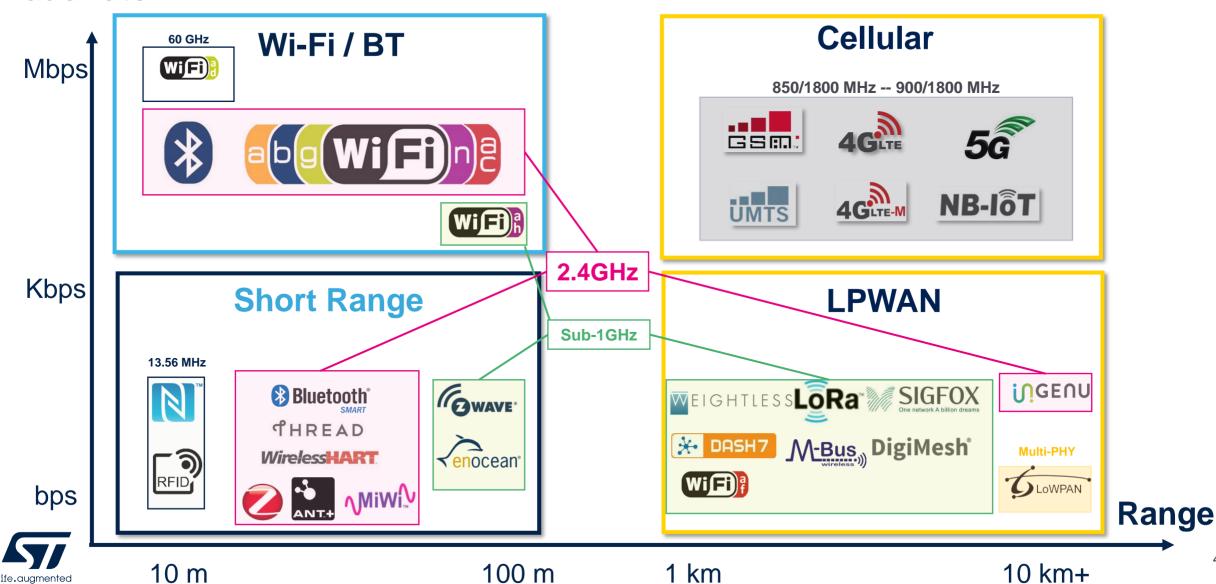
Agenda

Overview of LPWA Technology & Market

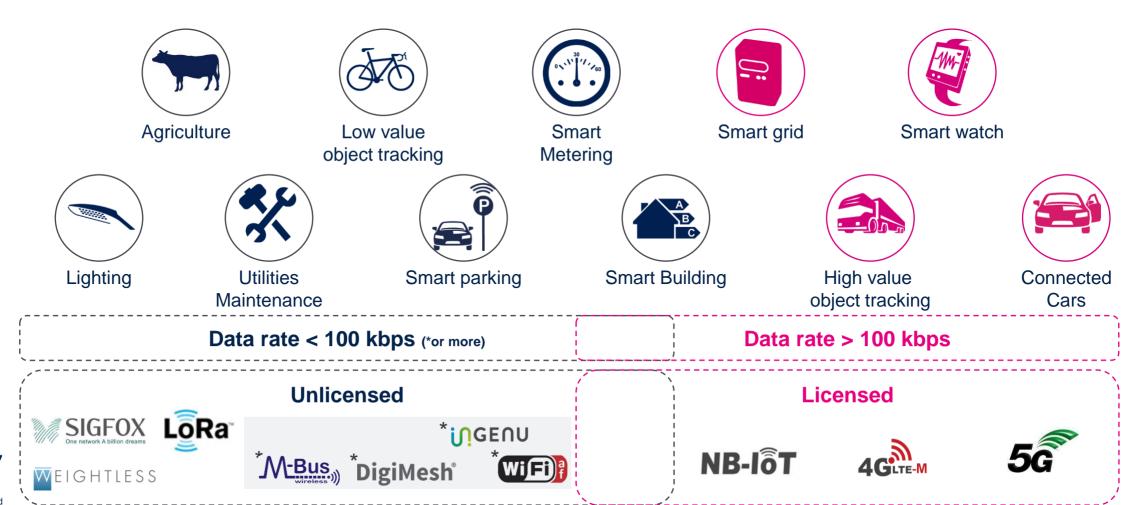
STM32WL World 1st LoRa SoC



Demo (Node – GTW – Server)


LPWAN: The IoT missing link

How to connect remote objects?

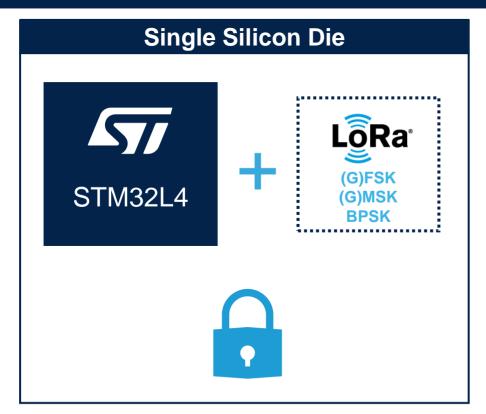

Technological subsets overview

Baud rate

LPWAN - Uses cases VS Data rate

Use cases will help to identify the most appropriate technology

STM32WL series MCU Long-range wireless System-on-Chip



System-On-Chip made for versatility

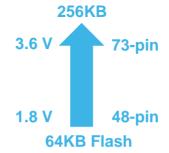
A long-range wireless microcontroller: One die, many IoT possibilities

World First!

Make the choice of STM32WL series

The 7 key points that will make the difference

Massive integration Cost saving

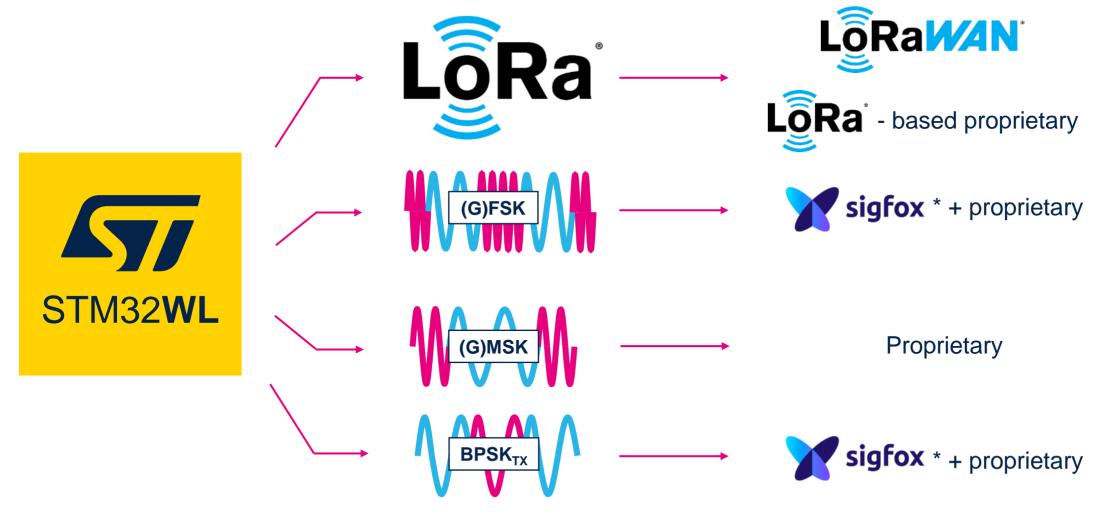

Open platform

Ultra-low-power

STM32 security

A large offer is coming

No matter what!



Deep integration Wide purposes

4 Modulations - Many protocols

STM32WL - A rich feature set

- Arm® Cortex®-M4 DSP up to 48 MHz
- Up to 256 KB Flash and 64 KB SRAM
- Sub-GHz Radio Multi-modulations
 - LoRa, (G)FSK, (G)MSK, BPSK
 - 2 embedded power amplifiers:
 1 output up to +15 dBm / 1 output up to +22 dBm
 - LoRa RX sensitivity: -148 dBm (SF12, BW=10.4kHz)
 - RX: 4.82 mA and TX: 15mA (at 10dBm) / 87mA (at 20dBm) [3.3V]
- Peripherals
 - 3xI²C, 2xUSART, 1xLP-UART, 2xSPI
- 7x timers + 2x ULP Comparators
- 1.8 to 3.6V voltage range (DC/DC, LDO)
- -40 to up to +105°C temperature range
- Power consumption
 - < 71µA/MHz Active mode (3V RF OFF)
 - 1 μA Stop2 mode with RAM retention
 - 390 nA Standby mode with RTC
 - 31 nA Shutdown mode

Control

Power supply 1.8 to 3.6 V w/ DCDC+ LDO POR/PDR/PVD/BOR

Crystal oscillators 32 MHz (Radio + HSE) 32.768 KHz (LSE)

Internal RC oscillators 32,768 KHz + 16 MHz + 48 MHz ± 1% acc. over V and T(°C)

RTC/AWU/CSS

PLL/FLL

SysTick timer

2 watchdogs (WWDG/IWDG)

43 GPIOs

Cyclic redundancy check

Voltage scaling (2 modes)

Arm® Cortex®-M4 DSP 48 MHz

Nested vector interrupt controller (NVIC)

Memory protected unit (MPU)

JTAG/SW debug

ART Accelerator™

AHB Bus matrix

2x DMA 7 channels

Radio

LoRa®, (G)FSK, (G)MSK, BPSK

+15dBm & +22dBm Power Outputs -148 dBm sensitivity (LoRa)

150 MHz to 960 MHz

Security

256-bit AES/PKA

TRNG + PCROP

Memory

Up to 256-Kbyte Flash

Up to 64-Kbyte SRAM

Boot ROM

Boot loader

Timers

1 x 32-bit timer

3x 16-bit timers 3x ULP 16-bit timers

Analog

1x 12-bit ADC SAR 2.5 Msps

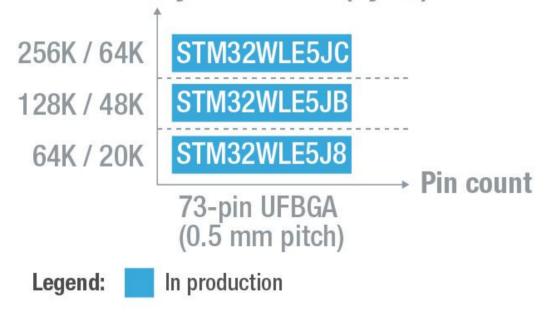
12-bit DAC

2x ULP comparators

Temperature sensor

Connectivity

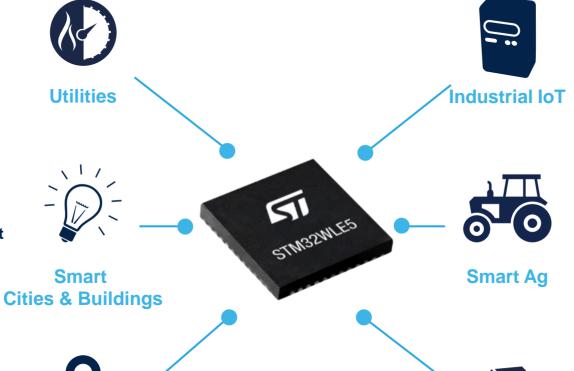
2x SPI, 3x I2C


2x USART LIN, smartcard, IrDA, Modem control

1x ULP UART

STM32WL Sub-1 GHz - Portfolio

Flash memory / RAM size (bytes)


Up to 43 GPIOs for full flexibility
+
Tiny package footprint

Best Ssuited for many LPWAN markets

- Worldwide compatibility 150 MHz to 960 MHz Linear Range
- Multi-protocol capable
- ST Longevity commitment: 10 years lifetime

- Up to +22 dBm output power for wide coverage
- -148 dBm sensitivity with LoRa: Robust RF Link
- Reduced BOM cost

- Up to 105 °C MCU capable
- Only 5 µs wakeup time for best latencies
- Only 4.82 mA as LoRa RX consumption for battery optimization

- Link Budget > 160 dB = Very long ranges
- Excellent battery lifetime: Only 15 mA for LoRa TX consumption @ 10 dBm
- PCROP, ECC, TRNG, PKA, for best design robustness

- Unique-IDs for enhanced traceability
- Down to 390 nA mode with RTC and 32KB of RAM for extended Battery lifetime
- Small form factor with UFBGA 5x5 package

Logistics

Smart Home

- Down to 71 μA/MHz in Run mode for efficient action
- < 1 μA Stop mode with full RAM for battery life optimization
- 12-bit ADC & DAC for mixed applicative use cases

Flexible power scheme

Flexible power scheme FlexPowerControl

Typ with LDO @ $V_{DD} = 3 V @ 25 °C$

		RUN (Range1) at 48 MHz	71* / 115 μA / MHz	
	Wake-up time to RUN	RUN (Range2) at 16 MHz	100* / 115 μA / MHz	
	6 cycles	SLEEP at 48 MHz	28* / 35 μA / MHz	_
	5 μs	STOP 1 (full retention)	4.55 μΑ** ^A	
	5.5 µs	STOP 2 (full retention)	1 μΑ** ^A	
	29 μs	STANDBY + 32 KB RAM	445 nA** ^B	
29 µs		STANDBY	71 nA*	
	267 μs SHUTDOW 31*** / 175 nA**B		5 nA** ^B	
		V _{BAT} 5*** / 200 n.	A**B	

^{*} Typical values with SMPS, RF OFF

RF Capable

Benchmark Scores

- High Efficiency
 - → CoreMark score = 162¹
- Ultra Low-Power Platform
 - → ULPBbench score ≈ 204¹

^{**}A RTC clocked by LSI / **B RTC clocked by LSE

^{***} All OFF

Flexible power scheme Matching your application needs

LPWANs made easy through ultra-low-power tradeoffs

Seamless toolbox (I²C, SPI, USART, ADC/DAC, Timers, Comparators etc.)

Power mode	Arm [®] Cortex [®] -M4	Peripherals	RAM Retention	RF
Run	✓	✓	Yes	
Sleep	X	✓	Yes	✓
Stop 0 Stop 1 Stop 2	X X X	√ ✓ Subset	Yes Yes Yes	√ √ √
Standby	X	X	Yes	✓
Shutdown	X	X	Х	X

RF available In all power modes

Back-up registers are always available

Efficient power management STOP modes comparison

Flexible peripherals power mapping

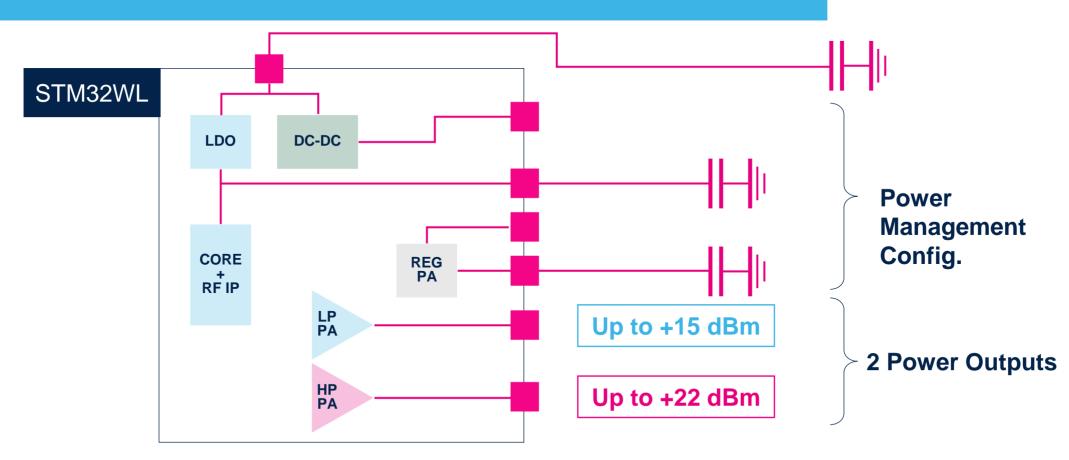
		STOP0	STOP1	STOP2
Consumption		Typ, 25 °C, 3 V, LDO		
(without Real Time		400 μΑ	4.55 µA	1 μΑ
Wakeup time to	Flash	2.2 µs	5 µs	5.5 µs
48 MHz	RAM	2.2 µs	5.1 µs	5.5 µs
Wakeup clock		≤ 48 MHz		
Regulator		Main or Low-Power regulator		Low-power regulator
Peripherals		All	All	CSS, RTC, 3 Tamper Pins, 1x LPUART, 1x I ² C, VREFBUF, 2x COMP, 1x LPTIM, Dual-WDG, CRC, EXTI

No impact on wakeup time from embedded DCDC

Ultra-low power & IoT ready for worldwide applications

Best LoRa-enabled IP on the market

Transmission			
Parameter	Settings	Value	
TX	+10 dBm 868/915 MHz	15 mA DCDC	
TX	+20 dBm 868/915 MHz	87 mA DCDC	


Worldwide Compatibility

Reception			
Parameter	Settings	Value	
LoRa Sensitivity	BW_L = 10.4 kHz SF = 12	-148 dBm	
2-FSK Sensitivity	BR_F = 0.6 kb/s FDA = 0.8 kHz BW_F = 4 kHz	-125 dBm	
RX	FSK 4.8kb/s buck 100mA max	4.47 mA DCDC 8.18 mA LDO	
RX	LoRa [®] 125 kHz	4.82 mA DCDC 8.9 mA LDO	

Flexible power implementation

Tailor STM32WL to your IoT needs

Advanced features and ecosystem

STM32WL - Safety and security

Secure you application with embedded safety & security

- · Back-up clock circuitry
- Supply monitoring
- · Dual watchdog
- Flash memory with ECC (address status register)
- SRAM Parity check
- Cyclic Redundancy Check
- Brown-out reset in all modes
- Clock Security System
- Backup byte registers

Security

- Anti-Tamper detection
- Boot Lock
- Read & Write protection
- Memory Protection Unit (MPU)
- Software IP Protection
- True Random Number Generator
- Private Key Accelerator
- Unique IDs (64- and 96-bit)

Management

Chips & stacks delivery model

Open chips, takeaway stacks

STM32WL Arm® Cortex®-M4 Application Firmware + Peripherals + Radio stack

- Open Platform
- Open stack

Certified LoRaWAN stack

A higher level of integration

MCU + Radio 2-in-1 solution

STM32WL Arm® Cortex®-M4 Application Firmware + Peripherals + Radio stack

VS

Standalone St MCU tra

Standalone transceiver

- SoC solution (1 single die)
- All-in-1 solution cost saving
- Simplified development helps speeding up time to market

- 2 standalone chips, or dice (SiP)
- Bigger final PCB (increased cost)
- Wired communication more exposed

STM32WL – Introductory ecosystem

Fully integrated into the rich and market-proven STM32 ecosystem

STM32 Nucleo-64

Flexible prototyping

Dev tools

STM32CubeMX for pinout and clock configuration
STM32CubeProg

Partners IDE

Stacks

LoRaWAN Sigfox¹

¹ Coming soon

Please contact your nearest ST Sales Office for more information

Save on your application cost

Integrated functionalities helps you drop the BOM down

Optimization of the silicon cost

- Deep integration factor
- Less external components
- Single 32 MHz crystal for CPU
 & embedded radio
- 32 kHz master clock output available

Optimization of the ecosystem cost

- LoRaWAN stack: free of charge
- STM32CubeMX: free of charge
- STM32CubeProg: free of charge
- System-on-chip avoids to use a second radio

STM32 rolling longevity commitment

Longevity commitment is renewed every year

Starting in 2020

STM32F1 (launched in 2007)STM32L1 (launched in 2009)

STM32F2 (launched in 2010)

•

• STM32WB (launched in 2018)

• STM32G0 (launched in 2018)

• **STM32G4** (launched in **2019**)

STM32WL (launched in 2020)

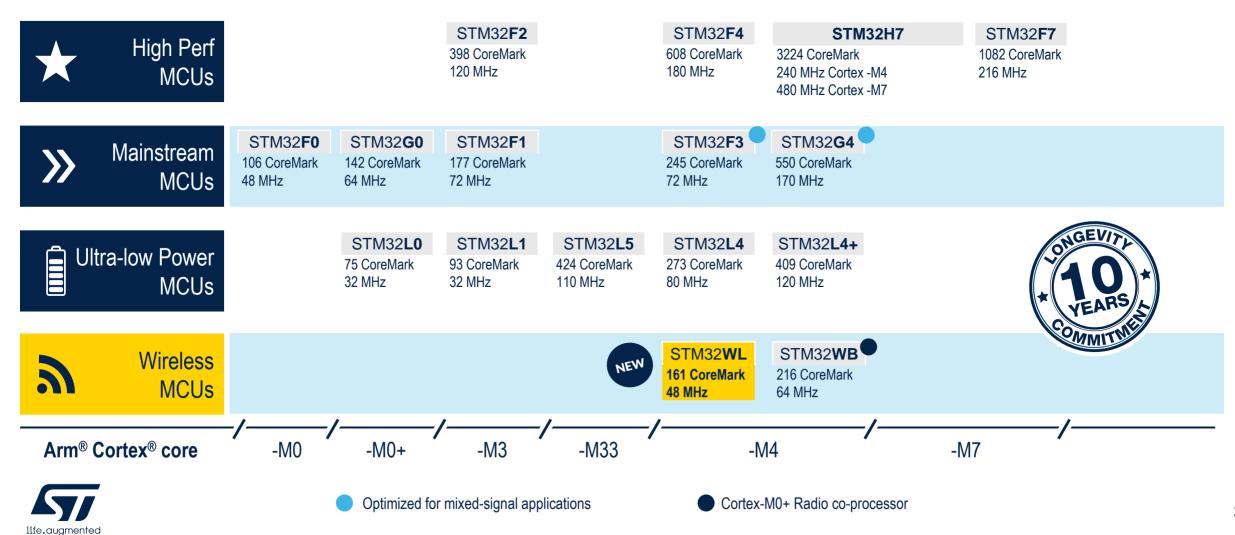
22 years of commitment

20 years of commitment

19 years of commitment

11 years of commitment

11 years of commitment


10 years of commitment

10 years of commitment

STM32 MCU "Wireless" Series

Releasing Your Creativity

/STM32

@ST_World

community.st.com

www.st.com/STM32WL

Thank you

